УТВЕРЖДАЮ

« »	2016 г.
	_ Л. А. Новокрещенов
АО «Литий-Эле	мент»
директора по раз	звитию и спецтехнике
директора - заме	еститель Генерального
Первый замести	тель Генерального

Протокол № 4 – 2016/ОАС

исследований источников тока системы МРЛ CR123A производства фирмы Tekcell

- 1 Объект испытаний
- 1.1 Испытаниям подвергались ИТ CR123A производства фирмы Tekcell в количестве 5 шт.
 - 2 Цель испытаний
- 2.1 Изучение ИТ CR123A, а именно его конструктивных особенностей, технологических решений и электрических характеристик.
 - 3 Общие положения
- 3.1 Исследовательские работы проводил отдел авторского сопровождения. Электрические испытания проводила КИЛ.
 - 3.2 Испытания источников тока проводились в период с 1 марта по 4 апреля 2016 г.
 - 4 Метрологическое обеспечение
 - 4.1 Испытательное оборудование аттестовано по ГОСТ 8.568-97.
 - 4.2 Средства измерений поверены по ПР 50.2.006-94.

- 5 Результаты испытаний
- 5.1 Замер основных параметров ИТ
- 5.1.1 Осмотр внешнего вида источников тока показал отсутствие каких-либо повреждений и внешних недостатков. Элементы пронумерованы условно цифрами от 1 до 5.

5.1.2 Результаты замеров массы источников тока и НРЦ представлены в таблице 1.Таблица 1

		са, г		
№ИТ	результат	реклам. данные	НРЦ, В	
1	16,12		3,231	
2	16,44		3,250	
3	16,18	16,0	3,248	
4	16,53		3,229	
5	16,15		3,250	

5.1.3 Результаты замеров габаритных размеров ИТ представлены в таблице 2.
Таблица 2

№ ИТ	Габаритные размеры				
Nº YII	диаметр, мм	реклам. данные	высота, мм	реклам. данные	
1					
2					
3	16,5	$17,1^{0,0}_{-0,6}$	34,2	$34,5^{0,0}_{-0,7}$	
4					
5					

5.1.4 С помощью измерителя внутреннего сопротивления химических источников тока VER 1.8A, производства ООО «Мегарон» г. Санкт-Петербург замерили величину внутреннего сопротивления на постоянном и переменном токе. Результаты представлены в таблице 3.

Таблица 3

№ИТ		НРЦ,В	Uнаг.,B			
Nº YII	Омическое Поляризационное		Полное	На 1000 Гц.	пгц,ь	Онаг.,Б
1	301	230	531	306	3,233	2,937
2	326	207	533	346	3,259	2,868
3	279	223	502	291	3,256	2,965
4	316	189	505	305	3,239	2,941
5	308	224	532	399	3,259	2,943

- 5.2 Исследование конструкции источника тока
- 5.2.1 Разобран ИТ СR123A № 5. Осмотр внешнего вида источника тока показал отсутствие каких-либо повреждений и внешних недостатков. На ИТ наклеена этикетка на липкой основе. Под ней на крышке и дне источника тока наблюдаются пластмассовые изоляционные прокладки черного цвета. Крышка завальцована. На блоке электродов находится пластмассовая прокладка зеленого цвета с пятью отверстиями, одно из которых находится в центре. Конструкция элемента рулонная, с плотной сборкой электродов. Токоотвод положительного электрода приварен к крышке, токоотвод отрицательного электрода к дну корпуса. На дне корпуса находится пластмассовая прокладка зеленого цвета с одним отверстием в центре. Блок электродов обернут сепаратором и закреплен лентой на липкой основе желтого цвета.

Отрицательный электрод – литиевая пластина: толщина 0,15 мм, длина 285 мм, ширина 23 мм. Выполнен без коллектора, с одного края сложен вдвойне и в него запрессован токоотвод. Длина токоотвода – 36 мм, ширина – 4,0 мм. Токоотводом является пластина, из притягивающегося к магниту металла (предположительно – никель). Токоотвод приварен к дну корпуса точечной сваркой. Масса отрицательного электрода – 0,5 г (Q=1,9 A·ч). На поверхности лития находится лента для фиксации блока электродов. Длина ленты – 75 мм. Отрицательный электрод с двух сторон обернут микропористым сепаратором.

Микропористый сепаратор: толщина 25 мкн, ширина одиночной ленты 27 мм, длина — 700 мм. Для определения термочувствительности сепаратора, по ТИ 00218710.25203.006 проверялось его газопропускание. Время равно 13 сек. Термообработка сепаратора в сушильном шкафу при температуре 140°С в течение 5 минут привела к отсутствию газопропускания. Следовательно, сепаратор является термочувствительным, трехслойным (РР/РЕ/РР).

Положительный электрод представляет собой активную массу, нанесённую на, предположительно, алюминиевый коллектор (просечная решетка): толщина 0,46 мм, длина 250 мм, ширина 25 мм. Масса — 8,2 г. Край положительного электрода зафиксирован лентой на липкой основе желтого цвета. Токоотвод положительного электрода обернут стеклотканью с липким слоем. Длина токоотвода — 33 мм. Токоотводом является пластина, из притягивающегося к магниту металла (предположительно — никель).

Крышка состоит из трех частей: фальшкрышка, полисвич и клапан, запрессованные вместе в пластиковый изолятор, который в свою очередь завальцован в корпус ИТ. Клапан состоит из тонкой металлической фольги, не притягивающейся к магниту. На отпрессовке крышки находятся два отверстия. Полисвич проверили на срабатывание. Ток срабатывания составил 3A.

Проведена фотосъёмка ИТ, фотоматериалы представлены в Приложении А.

- 6.2 Проверка технических характеристик.
- 6.2.1 Для определения ёмкости источника тока CR123A проводили разряд ИТ №1 максимальным рекомендуемым производителем разрядным током 1,0 A при н.к.у. до конечного напряжения 2,0 В.

Через 48 часов, для снятия остаточной ёмкости, проводили доразряд ИТ последовательно токами 0,1 A, 0,05 A, 0,014 A при н.к.у. (до конечного напряжения 2,0 В на каждом токе) с перерывом между режимами 24 часа. Результаты представлены в таблице 4 и на рисунке 1 (Приложение В).

Таблица 4

Ток разряда	НРЦ, В	Ивкл.,В	Время разряда, ч	Емкост	ь, А·ч	Общая емкость, А·ч
1,0 A	3,177	2,96	1,25	1,2	5	
0,1 A	2,906	2,73	2,27	0,227		1.57
0,05 A	2,695	2,51	0,9	0,045	0,32	1,57
0,014 A	2,648	2,56	3,42	0,048		

- 6.2.2 Источники тока CR123A № 2, № 3 разряжались импульсным током.
- а) ИТ № 2 разряжался импульсным током 1,5 А длительностью 10 сек. (режим разряда № 1 ОАО «Светлана-ЛЕД). Пауза между импульсами составляла 10 сек. Разряд проводили при н.к.у. до конечного напряжения 0,0 В с контролем температуры на стенке ИТ. Результаты представлены в таблице 5 и на рисунках 2 (Приложение В).

Таблица 5

Контролируемый параметр	Значение параметра
НРЦ, В	3,20
Швкл. , В	2,75
Общее время разряда, сек.	10120
Время разряда, ч	0,93
Емкость, А.ч	1,395
Мах температура на стенке ИТ, °С	51,7

б) ИТ № 3 разряжался импульсным током 2,0 А длительностью 10 сек. (режим разряда № 2 ОАО «Светлана-ЛЕД). Пауза между импульсами составляла 10 сек. Разряд проводили при н.к.у. до конечного напряжения 0,0 В с контролем температуры на стенке ИТ. Из-за некорректной работы разрядного стенда разряд, до напряжения 2,0 В

проводился токами от 1,8A до 1,3 A; с 2,0 B и до конечного напряжения 0,0 В ИТ разряжался током 2,0 A. Результаты представлены в таблице 6 и на рисунках 3 (Приложение В).

Таблица 6

Контролируемый параметр	Значение параметра
НРЦ, В	3,23
Ивкл. , В	2,78
Общее время разряда, сек.	до 2,0 В – 7854 до 0,0 В - 9900
Время разряда, ч	до 2,0 В – 2,18 до 0,0 В - 2,77
Емкость, А.ч	1,304
Мах температура на стенке ИТ, °С	57,9

Через 24 часа после окончания разряда проводили замер величины внутреннего сопротивления источников тока. Результаты представлены в таблице 7.

Таблица 7

Ma IJT		IIDII D	Hyan D			
№ИТ	Омическое	Поляризационное	На 1000 Гц.	НРЦ,В	Uнаг.,B	
2	1240	1645	2885	1021	2,66	0,915
3	760	825	1585	859	2,501	1,489

6.2.3 Проводено снятие вольт - амперных характеристик ИТ СR123A № 4, выдерживанием ИТ под нагрузкой в течение 3 минут с фиксацией напряжения в конце третьей минуты. Измерения проводились в порядке возрастания тока до максимального значения, используя токи: 3, 7, 14, 30, 50, 100, 250, 500, 750, 1000, 1500, 2000, 2500, 3000, 3500 мА с перерывом 3 минуты до конечного напряжения 2,0В. При достижении напряжения Uкон.=2,0 В, испытание проводили в порядке убывания тока. Вольт - амперная зависимость представлена на рисунке 4 (Приложение В). Общая емкость ИТ равна 1,202 А·ч.

Через 48 часов провели доразряд ИТ № 4 последовательно токами 0,1 A, 0,05 A, 0,014 A при н.к.у. (до напряжение 2,0 В на каждом токе). Перерыв между токами 24 часа. Результаты доразрядов представлены в таблице 8 и на рисунке 5 (Приложение В).

Таблица 8

Ток доразряда НРЦ, В	Ивкл.,В	Время разряда, ч	Емкость, А·ч	Общая
----------------------	---------	------------------	--------------	-------

					остаточная емкость, А·ч
0,1 A	2,922	2,72	2,88	0,288	
0,05 A	2,723	2,54	1,083	0,054	0,385
0,014 A	2,676	2,55	3,083	0,043	

Общая снятая емкость ИТ № 4 составляет 1,59 А·ч.

- 6.3 Дополнительно подвергли разборке разряженный ИТ CR123A № 1.
- 6.3.1 Избыточное давление и свободный электролит отсутствуют.
- 6.3.2 Положительный электрод эластичен, не наблюдается расслоения. Толщина 0,65 мм.
 - 6.3.3 Отрицательный электрод отсутствует полностью, кроме внешнего витка.
 - 6.3.4 Сваренные части ИТ целые, деформации ИТ не наблюдается.
- 6.4 Дополнительно провели испытание на короткое замыкание при н.к.у. ИТ CR123A № 6.

Результаты представлены на рисунке 6 (Приложение В).

При замыкании ИТ CR123A наблюдалось резкое увеличение тока свыше 10 A, далее в течение одной минуты ток снизился до 1,82 A. На 69 минуте ток КЗ со значения 1,37 A снизился до 0,64A. Температура ИТ была max 77 °C.

ИТ в течении 95 минут воздействия внешнего КЗ не разрушился, не деформировался и не разгерметизировался. Предположительно сработала защита - полисвич

7 Выводы

- 7.1 Конструкция рулонного типа и удлинённые положительный и отрицательный электроды позволяют элементу обеспечивать широкий диапазон токонагрузочных характеристик, и позволяет элементу работать на высоких плотностях тока, практические не снижая при этом величину реализованной ёмкости.
- 7.2 Емкость ИТ CR123A при разряде последовательно токами 1 A, 0,1 A, 0,05 A, 0,014 A при н.к.у., до конечного напряжения 2,0 В на каждом токе, составила 1,57 А·ч.

- 7.3 При импульсном разряде ИТ CR123A токами от 1,3A до 2,0A, до конечного напряжения 0,0 B, емкость составила от 1,304 до 1,395 A·ч.
- 7.4 При снятии вольт амперной характеристики ИТ CR123A ток разряда достигал 3,5 A (начиная с 3 мA), при этом общая снятая емкость разряда равна 1,202 A·ч. После доразряда последовательно токами 0,1 A, 0,05 A, 0,014 A при н.к.у., до конечного напряжения 2,0 B на каждом токе, ИТ отдал общую емкость 1,59 A·ч.
 - 7.5 ИТ CR123A устойчив к воздействию внешнего КЗ.
- 7.6 Разрядные емкости ИТ CR123A по факту отличаются от рекламных данных, в основном в сторону увеличения характеристик.

Зам. генерального д	иректора-
главный конструкто	p
	А.П. Шаронов
Начальник КИЛ	
	Д.Е. Дмитриев
Начальник ОАС	
	К.Р. Касимов
Вед. инженер ОАС	
	А.И. Куликов
Инженер-исследова	тель 2 кат.
	Т.А. Новоженина